Partagez sur
STAGE Study of strongly correlated fermions via stochastic evaluation of Feynman diagrams
Date de mise à jour de l’offre
Laboratoire de Physique Statistique / Laboratoire Kastler Brossel (UMR 8550 / UMR 8552) :
Le Laboratoire Kastler Brossel est un des acteurs majeurs dans le domaine de la physique quantique. Ses thématiques abordent de nombreux aspects depuis les tests fondamentaux de la théorie quantique jusqu’aux applications, couvrant ainsi une large gamme de sujets tels que les gaz quantiques, l’optique et l’information quantiques, les atomes et la lumière dans les milieux denses ou complexes, les tests des interactions fondamentales et la métrologie.
Description de la mission
Strongly correlated fermion problems are faced in several areas of physics: condensed
matter, notably high Tc superconductors, but also ultracold atomic gases, nuclear physics, or
QCD. Numerous predictions are being obtained from approximate methods, with
uncontrolled systematic errors. Conventional quantum Monte Carlo methods are exact, but
generally limited to small systems, because the anti-symmetry of the fermionic wave
function leads to a computational time growing exponentially with system volume.
We follow a different approach: Feynman diagrams, formulated directly for infinite volume.
In contrast to usual diagrammatic calculations, we control the series-truncation error by
going to high orders. To this end we develop new Monte Carlo algorithms allowing to
sample diagrammatic series. Often, however, diagrammatic series are divergent. One then
has to give a mathematical meaning to the series, and then to construct a resummation
method capable of transforming the divergent series into a result that converges towards the
exact physical value in the limit of infinite truncation-order. The appropriate resummation
method can be found by studying the large-order asymptotic behavior.
We have recently realized this program for the first time for strongly correlated fermions in
continuous space, obtaining the large-order asymptotics analytically using functionalintegral and saddle-point techniques. Specifically, we studied spin-1/2 non-relativistic
fermions in 3D with contact interactions of infinite scattering length, the so-called unitary
Fermi gas. Apart from being qualitatively relevant for high Tc superconductors and neutron
matter, the unitary gas model accurately describes experiments on ultracold atomic gases
conducted at LKB, which allows for direct theory-experiment comparison.
For the internship we propose to study the properties of the strongly spin-imbalanced Fermi
gas – the so-called Fermi polaron, a single impurity in a Fermi sea – for which new
experimental data are available. Another possibility is to study the large-order asymptotics,
either for the superfluid phase of the unitary Fermi gas, or for the electron gas with
Coulomb interactions, a central problem in material science for which we are also
developing diagrammatic Monte Carlo algorithms.
matter, notably high Tc superconductors, but also ultracold atomic gases, nuclear physics, or
QCD. Numerous predictions are being obtained from approximate methods, with
uncontrolled systematic errors. Conventional quantum Monte Carlo methods are exact, but
generally limited to small systems, because the anti-symmetry of the fermionic wave
function leads to a computational time growing exponentially with system volume.
We follow a different approach: Feynman diagrams, formulated directly for infinite volume.
In contrast to usual diagrammatic calculations, we control the series-truncation error by
going to high orders. To this end we develop new Monte Carlo algorithms allowing to
sample diagrammatic series. Often, however, diagrammatic series are divergent. One then
has to give a mathematical meaning to the series, and then to construct a resummation
method capable of transforming the divergent series into a result that converges towards the
exact physical value in the limit of infinite truncation-order. The appropriate resummation
method can be found by studying the large-order asymptotic behavior.
We have recently realized this program for the first time for strongly correlated fermions in
continuous space, obtaining the large-order asymptotics analytically using functionalintegral and saddle-point techniques. Specifically, we studied spin-1/2 non-relativistic
fermions in 3D with contact interactions of infinite scattering length, the so-called unitary
Fermi gas. Apart from being qualitatively relevant for high Tc superconductors and neutron
matter, the unitary gas model accurately describes experiments on ultracold atomic gases
conducted at LKB, which allows for direct theory-experiment comparison.
For the internship we propose to study the properties of the strongly spin-imbalanced Fermi
gas – the so-called Fermi polaron, a single impurity in a Fermi sea – for which new
experimental data are available. Another possibility is to study the large-order asymptotics,
either for the superfluid phase of the unitary Fermi gas, or for the electron gas with
Coulomb interactions, a central problem in material science for which we are also
developing diagrammatic Monte Carlo algorithms.
Profil recherché
Mé physique
Niveau de qualification requis
Bac + 4/5 et +
Les offres de stage ou de contrat sont définies par les recruteurs eux-mêmes.
En sa qualité d’hébergeur dans le cadre du dispositif des « 100 000 stages », la Région Île-de-France est soumise à un régime de responsabilité atténuée prévu aux articles 6.I.2 et suivants de la loi n°2204-575 du 21 juin 2004 sur la confiance dans l’économie numérique.
La Région Île-de-France ne saurait être tenue responsable du contenu des offres.
Néanmoins, si vous détectez une offre frauduleuse, abusive ou discriminatoire vous pouvez la signaler
en cliquant sur ce lien.
-
EmployeurLaboratoire de Physique Statistique / Laboratoire Kastler Brossel (UMR 8550 / UMR 8552)
-
Secteur d’activité de la structureEnseignement - Formation - Recherche
-
Effectif de la structurePlus de 250 salariés
-
Site internet de la structurehttp://www.lkb.upmc.fr
-
Type de stage ou contratStage pour lycéens et étudiants en formation initiale
-
Date prévisionnelle de démarrage
-
Durée du stage ou contratPlus de 4 mois et jusqu'à 6 mois
-
Le stage est-il rémunéré ?Oui
-
Niveau de qualification requis
Bac + 4/5 et + -
Lieu du stageLaboratoire Kastler Borssel
24 Rue Lhomond
75005 PARIS 5E ARRONDISSEMENT -
Accès et transportsRER B Luxembourg