STAGE Single Graphene Quantum dots in Layered Heterostructures

Date de mise à jour de l’offre

ENS PARIS SACLAY :

Une grande école pluridisciplinaire des métiers de la recherche et de l'enseignement supérieur Centre de formation et de recherche ouvert sur l’international et la pluridisciplinarité, l’ENS Paris-Saclay offre aux étudiant·es un contact précoce immersif avec la recherche et mobilise les laboratoires dans leur parcours de formation en sciences fondamentales, en sciences humaines et sociales et en sciences pour l’ingénieur. Le Diplôme de l’ENS Paris-Saclay, qui se prépare en quatre ans, porte l’ambition d’amener les normalien·nes vers le doctorat.

Description de la mission

Over the last few years, the development of new single
quantum emitters has been a fast-growing field of research.
Such emitters should share essential qualities: tunability,
brightness, photostability, possibility of electrical injection, etc.
In this context, graphene quantum dots (GQDs) have many
assets. The perfect control on their size, symmetry, and edge
shape, provided by top-down synthesis, offers a wide range of
tunable properties. The understanding and mastering of these
properties open the way toward Swiss-knife emitters with welldefined
functionalities. The first step toward this goal is
addressing the photophysics of GQDs at the single-molecule
level, as we recently reported for the first time [1, 2]. We showed that GQDs are photostable and
make very bright quantum emitters with excellent single-photon purity at room temperature.
A second step is their integration into physical platforms, allowing simple handling of GQDs and
extension of their capabilities. A natural choice for this integration is 2D materials and their
combination in van der Waals heterostructures: first due to the genuine match of GQDs to these 2D
hexagonal materials, then for the exciting properties of these latest. For example, transition metal
dichalcogenides such as MoS2 have been subject to extensive studies revealing fascinating
excitonic physics and pseudo-spin properties. Coupling GQDs on top of these 2D materials will
provide hybridization of the exceptional physical properties of both systems, such as huge spin-orbit
coupling and valley asymmetry, and a rich excitonic physics and novel photonic effects due to the
interlayer coupling. Ultimately, the development of heterostructures architecture will provide versatile
single quantum systems with finely tunable properties. Single GQD will then unleash their full
potential by reaching, for instance, lifetime limited optical emission, enhanced photostability, and
acquire new properties such as spin properties through the interaction with valley sensitive-materials.

Profil recherché

The present project aims is first to demonstrates GDQs-hBN and GDQs-MoS2 heterostuctures, and
to studies their mutual interactions by optical spectroscopy and quantum optics experiments at the
single object level.
References :
[1] S. Zhao et la, Nature Com 9, 3470 (2018) ;
[2] T. Liu et al, submitted

Niveau de qualification requis

Bac + 4/5 et +
  • Employeur
    ENS PARIS SACLAY
  • Secteur d’activité de la structure
    Enseignement - Formation - Recherche
  • Effectif de la structure
    De 51 à 250 salariés
  • Type de stage ou contrat
    Stage pour lycéens et étudiants en formation initiale
  • Date prévisionnelle de démarrage
  • Durée du stage ou contrat
    Plus de 4 mois et jusqu'à 6 mois
  • Le stage est-il rémunéré ?
    Oui
  • Niveau de qualification requis

    Bac + 4/5 et +
  • Lieu du stage
    4 Av. des Sciences,
    91190 GIF SUR YVETTE
  • Accès et transports
    https://ens-paris-saclay.fr/lecole/venir-lecole