STAGE Semiconductor sources of quantum states of light at room temperature: from fundamental studies to applications in quantum information protocols

Date de mise à jour de l’offre

Laboratoire Matériaux et Phénomènes Quantiques :

Le laboratoire Matériaux et Phénomènes Quantiques (MPQ) est une unité mixte de recherche (UMR 7162) du CNRS et de l’Université de Paris, installée sur le campus de Paris Rive Gauche. Elle est composée d’environ 120 personnes au total dont 51 permanent.e.s. Le laboratoire est spécialisé dans l’étude des matériaux quantiques de frontière et dans le développement de dispositifs quantiques innovants. Ces activités reposent sur un large spectre de compétences théoriques et expérimentales alliant la physique des matériaux, le transport et l’optique, et des plateformes technologiques de salle blanche, de spectroscopie et de microscopie électronique haute résolution.

Description de la mission

The generation of nonclassical states of light in miniature chips is a crucial step toward
practical implementations of future quantum technologies. For the sake of practicality and scalability, these
quantum sources should be easily produced, operate at room temperature, and be electrically excited and
controlled. The work of the QITe team is focused on AlGaAs-based quantum photonic devices: indeed this
platform presents a strong case for the miniaturization of different quantum components in the same chip:
strong second order nonlinearity and electro-optic effect, direct bandgap, generation of entangled photons in
the telecom band. After the demonstration of the first electrically driven device working at room temperature
[1] and the generation and symmetry control of biphoton frequency combs [2], in this project the QITe team
will push further the capabilities of its devices:
we will study the entanglement properties of the state emitted by electrically injected devices
- we will add novel on-chip functionalities to manipulate the photons polarization (polarizing beam splitter),
their relative delay (electro-optics effect) and manage the facets reflectivity to avoid or enhance cavity
effects.
- we will exploit the assets of the states emitted by our devices (wide spectral band, frequency anticorrelation
and polarization entanglement) for the implementation of entanglement-based multi-user
quantum key distribution either connecting several pairs of users [3] or implementing a network connecting
each user to all the others thanks to a connected graph principle.
- we will explore the comb structure of the emitted state to investigate its possible application in quantum
information protocols and to demonstrate that high-dimensional QKD can be used in practice to increase the
density and security of communication.
This project will combine device design and fabrication, quantum optics measurements and theory and
applications to QI protocols. It will benefit from the collaborations of the team with the Center of
Nanosciences and Nanotechnologies, the team of E. Diamanti at LIP6 and Nokia-Bell Labs.
[1] F. Boitier et al. Phys. Rev. Lett. 112, 183901 (2014)
[2] G. Maltese et al. npj Quantum information 6, 13 (2020)
[3] C. Autebert et al. Quantum Sci. Technol. 1 01LT02 (2016)

Profil recherché

M2

Niveau de qualification requis

Bac + 4/5 et +
  • Employeur
    Laboratoire Matériaux et Phénomènes Quantiques
  • Secteur d’activité de la structure
    Enseignement - Formation - Recherche
  • Effectif de la structure
    De 51 à 250 salariés
  • Type de stage ou contrat
    Stage pour lycéens et étudiants en formation initiale
  • Date prévisionnelle de démarrage
  • Durée du stage ou contrat
    Plus de 4 mois et jusqu'à 6 mois
  • Le stage est-il rémunéré ?
    Oui
  • Niveau de qualification requis

    Bac + 4/5 et +
  • Lieu du stage
    10 Rue Alice Domon et Léonie Duquet,
    75013 PARIS 13E ARRONDISSEMENT
  • Accès et transports
    RER metro bus