Partagez sur
STAGE The quantum Zeno effect in a dissipative SU(N) atomic gas
Date de mise à jour de l’offre
Centre national de la recherche scientifique (CNRS) IDF Villejuif :
Le Centre national de la recherche scientifique est un organisme public de recherche pluridisciplinaire placé sous la tutelle du ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation. Missions : faire de la recherche scientifique, valoriser les résultats, partager les connaissances, former par la recherche, contribuer à la politique scientifique.
Description de la mission
The quantum Zeno effect is one of the most remarkable quantum effects associated to open quantum system. In its standard formulation, it states that the continuous measurement of an unstable quantum system prolongs its lifetime. Moreover, a careful analysis shows that this enhanced lifetime can also be the consequence of a strong coupling to an environment, which acts as an unread measurement apparatus.
In this internship, that can become a Ph.D. thesis, we will consider what happens when a quantum simulator interacts with an environment, so strongly that the Zeno regime sets in. We will specifically consider the case of ultra-cold gases, and more in particular the case of atomic gases with an SU(N) nuclear spin (such as fermionic ytterbium or strontium). Here
dissipation can be represented by atomic losses from the gas, or simply by heating and dephasing; in all cases, it can be controlled from outside and tuned to the Zeno regime at will. [1, 2]
The interplay of the quantum Zeno effect with the unconventional spin symmetry of these gases is a promising way for creating in a dissipative fashion entangled states or topological states, here we want to further investigate this [3,4]. Experiments on this subject are being developed allover the world [5] but also in the Parisian area, and interactions with
experimentalists is possible.
References:
[1] N. Syassen et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases, Science 320, 1329 (2008).
[2] D. Rossini, L. Mazza et al. Strong correlations in lossy one-dimensional quantum gases: From the quantum Zeno effect to the generalized Gibbs ensemble, Phys. Rev. A 103, L1060201 (2021)
[3] M. Foss-Feig et al, Steady-state many-body entanglement of hot reactive fermions, Phys. Rev. Lett. 109, 230501 (2012)
[4] L. Rosso, L. Mazza and A. Biella, Eightfold way to dark states in SU(3) cold gases with twobody losses, Phys. Rev. A 105, L051302 (2022)
[5] K. Honda et al. Observation of the sign reversal of the magnetic correlation in a drivendissipative Fermi-Hubbard system, arXiv:2205.13162 (2022)
In this internship, that can become a Ph.D. thesis, we will consider what happens when a quantum simulator interacts with an environment, so strongly that the Zeno regime sets in. We will specifically consider the case of ultra-cold gases, and more in particular the case of atomic gases with an SU(N) nuclear spin (such as fermionic ytterbium or strontium). Here
dissipation can be represented by atomic losses from the gas, or simply by heating and dephasing; in all cases, it can be controlled from outside and tuned to the Zeno regime at will. [1, 2]
The interplay of the quantum Zeno effect with the unconventional spin symmetry of these gases is a promising way for creating in a dissipative fashion entangled states or topological states, here we want to further investigate this [3,4]. Experiments on this subject are being developed allover the world [5] but also in the Parisian area, and interactions with
experimentalists is possible.
References:
[1] N. Syassen et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases, Science 320, 1329 (2008).
[2] D. Rossini, L. Mazza et al. Strong correlations in lossy one-dimensional quantum gases: From the quantum Zeno effect to the generalized Gibbs ensemble, Phys. Rev. A 103, L1060201 (2021)
[3] M. Foss-Feig et al, Steady-state many-body entanglement of hot reactive fermions, Phys. Rev. Lett. 109, 230501 (2012)
[4] L. Rosso, L. Mazza and A. Biella, Eightfold way to dark states in SU(3) cold gases with twobody losses, Phys. Rev. A 105, L051302 (2022)
[5] K. Honda et al. Observation of the sign reversal of the magnetic correlation in a drivendissipative Fermi-Hubbard system, arXiv:2205.13162 (2022)
Profil recherché
Master 1 or 2 student, theoretical physics, quantum physics, condensed-matter physics.
Niveau de qualification requis
Bac + 4/5 et +
Les offres de stage ou de contrat sont définies par les recruteurs eux-mêmes.
En sa qualité d’hébergeur dans le cadre du dispositif des « 100 000 stages », la Région Île-de-France est soumise à un régime de responsabilité atténuée prévu aux articles 6.I.2 et suivants de la loi n°2204-575 du 21 juin 2004 sur la confiance dans l’économie numérique.
La Région Île-de-France ne saurait être tenue responsable du contenu des offres.
Néanmoins, si vous détectez une offre frauduleuse, abusive ou discriminatoire vous pouvez la signaler
en cliquant sur ce lien.
-
EmployeurCentre national de la recherche scientifique (CNRS) IDF Villejuif
-
Secteur d’activité de la structureEnseignement - Formation - Recherche
-
Effectif de la structurePlus de 250 salariés
-
Type de stage ou contratStage pour lycéens et étudiants en formation initiale
-
Date prévisionnelle de démarrage
-
Durée du stage ou contratPlus de 2 mois et jusqu'à 4 mois
-
Le stage est-il rémunéré ?Oui
-
Niveau de qualification requis
Bac + 4/5 et + -
Lieu du stageLPTMS bât 530, campus d’Orsay, Université Paris Saclay
rue André Rivière
91405 ORSAY -
Accès et transportsRATP, Bus (https://www.ratp.fr/), SNCF (https://www.sncf.com/fr)