Partagez sur
STAGE Quantum magnetism of ultracold fermions in optical lattices
Date de mise à jour de l’offre
Centre national de la recherche scientifique (CNRS) IDF Villejuif :
Le Centre national de la recherche scientifique est un organisme public de recherche pluridisciplinaire placé sous la tutelle du ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation. Missions : faire de la recherche scientifique, valoriser les résultats, partager les connaissances, former par la recherche, contribuer à la politique scientifique.
Description de la mission
We offer an experimental internship in the field of ultracold atoms. Our experiment produces degenerate gases of fermionic strontium 87 atoms, arranged on a periodic structure created by interfering laser beams: an optical lattice potential. This setting leads to the production of strongly correlated fermions, a category of systems prone to the rich phenomena of quantum magnetism, exotic conduction regimes, superconductivity, and many-body entanglement. Primarily a condensed matter topic, this theme is now explored in new settings by the so-called quantum simulators, such as our experiment.
Our system is specifically designed to realize generalizations of the Heisenberg model of antiferromagnetism to exotic large spins that have no equivalent system yet in other platforms. We can both realize situations analogous to those encountered by electrons (of spin ½) in crystalline materials, and novel situations as a consequence of the spin 9/2 of our atomic species (87Sr). There, novel magnetic phases are expected, such as spin liquids, with connections with topological materials and exotic forms of superfluidity.
Our focus is on the detection and characterization of many-body correlations, from classical alternate ordering up to the detection of purely quantum correlations (entanglement). By exploiting the narrow lines of strontium (in connection to atomic clocks), we are presently working on the deterministic preparation of low-energy spin textures, to study their dynamics and the growth of quantum correlations.
The intern will join our team during the optimization and characterization of the fidelity of these protocols to write spin textures onto the quantum degenerate lattice gas. We will then progress to the next stage, which is to study the many-body dynamics when these textures are either i) left to evolve freely under the influence of interactions, or ii) driven adiabatically to approach the strongly entangled ground state of the Heisenberg Hamiltonian. Moving towards this will involve work at different levels, such as i) the optimisation of the loading of the atoms in the optical lattices, to initiate the gas in a densely filled, insulating phase with small entropy; and ii) the characterization our new imaging system with high resolution (~1.2 µm) and close-to- single-atom detectivity...
We would like this internship to act as an introduction to a PhD thesis.
Our system is specifically designed to realize generalizations of the Heisenberg model of antiferromagnetism to exotic large spins that have no equivalent system yet in other platforms. We can both realize situations analogous to those encountered by electrons (of spin ½) in crystalline materials, and novel situations as a consequence of the spin 9/2 of our atomic species (87Sr). There, novel magnetic phases are expected, such as spin liquids, with connections with topological materials and exotic forms of superfluidity.
Our focus is on the detection and characterization of many-body correlations, from classical alternate ordering up to the detection of purely quantum correlations (entanglement). By exploiting the narrow lines of strontium (in connection to atomic clocks), we are presently working on the deterministic preparation of low-energy spin textures, to study their dynamics and the growth of quantum correlations.
The intern will join our team during the optimization and characterization of the fidelity of these protocols to write spin textures onto the quantum degenerate lattice gas. We will then progress to the next stage, which is to study the many-body dynamics when these textures are either i) left to evolve freely under the influence of interactions, or ii) driven adiabatically to approach the strongly entangled ground state of the Heisenberg Hamiltonian. Moving towards this will involve work at different levels, such as i) the optimisation of the loading of the atoms in the optical lattices, to initiate the gas in a densely filled, insulating phase with small entropy; and ii) the characterization our new imaging system with high resolution (~1.2 µm) and close-to- single-atom detectivity...
We would like this internship to act as an introduction to a PhD thesis.
Profil recherché
Le stage est proposé à un candidat en Master 2.
Niveau de qualification requis
Bac + 4/5 et +
Les offres de stage ou de contrat sont définies par les recruteurs eux-mêmes.
En sa qualité d’hébergeur dans le cadre du dispositif des « 100 000 stages », la Région Île-de-France est soumise à un régime de responsabilité atténuée prévu aux articles 6.I.2 et suivants de la loi n°2204-575 du 21 juin 2004 sur la confiance dans l’économie numérique.
La Région Île-de-France ne saurait être tenue responsable du contenu des offres.
Néanmoins, si vous détectez une offre frauduleuse, abusive ou discriminatoire vous pouvez la signaler
en cliquant sur ce lien.
-
EmployeurCentre national de la recherche scientifique (CNRS) IDF Villejuif
-
Secteur d’activité de la structureEnseignement - Formation - Recherche
-
Effectif de la structurePlus de 250 salariés
-
Type de stage ou contratStage pour lycéens et étudiants en formation initiale
-
Date prévisionnelle de démarrage
-
Durée du stage ou contratPlus de 4 mois et jusqu'à 6 mois
-
Le stage est-il rémunéré ?Oui
-
Niveau de qualification requis
Bac + 4/5 et + -
Lieu du stageInstitut Galilée - Université Sorbonne Paris Nord Laboratoire de Physique des Lasers
99 avenue J.-B. Clément
93430 VILLETANEUSE -
Accès et transportsRATP, Bus (https://www.ratp.fr/), SNCF (https://www.sncf.com/fr)