Partagez sur
STAGE Offre de stage : Electrically driven quantum light sources @ Room T
Date de mise à jour de l’offre
Laboratorire Matériaux et Phénomènes Quantiques :
Le laboratoire Matériaux et Phénomènes Quantiques (MPQ) est une unité mixte de recherche (UMR 7162) du CNRS et de l’Université Paris Diderot, installée sur le campus de Paris Rive Gauche. Elle est composée d’environ 120 personnes au total dont 51 permanent.e.s.
Le laboratoire est spécialisé dans l’étude des matériaux quantiques de frontière et dans le développement de dispositifs quantiques innovants. Ces activités reposent sur un large spectre de compétences théoriques et expérimentales alliant la physique des matériaux, le transport et l’optique, et des plateformes technologiques de salle blanche, de spectroscopie et de microscopie électronique haute résolution.
Description de la mission
The generation of nonclassical states of light in miniature chips is a crucial step toward practical implementations of
future quantum technologies. For the sake of practicality and scalability, these quantum sources should be easily
produced, operate at room temperature, and be electrically excited and controlled. In this context, AlGaAs present a
strong case for the miniaturisation of different quantum components in the same chip: strong second order nonlinearity
and electro-optics effect, direct bandgap, generation of entangled photons in the telecom band [1-4].
In this project we will build on an electrically injected twin photons source operating at room temperature
demonstrated by our team (Fig a) [2] to push further the capabilities of our devices:
- we will investigate and engineer the quantum properties of the emitted bi-photon state under electrical injection.
Preliminary characterisations show that the signal to noise ratio should allow demonstrating a high quality entangled
state leading to the violation of Bell inequalities (Fig b).
- we will explore the possiblity to develop quantum photonic circuits with new functionalities exploiting the electroopticseffect to
manipulate the generated quantum state.
- we will exploit the cavity effects dues to facets reflectivity to generate frequency entangeld qudits (i.e. quantum units
of information that may take any of d states). Such states present a particular interest since they could directly be used
for quantum information processing in optical fibers, for example to increase channel capacity and security in quantum
communications [5]. Preliminary results (Fig. c) show that our devices generate comb-like spectral correlations
corresponding to entangled frequency qudits with d larger that 100.
The candidate will have the possibility to participate to all aspects of the project, from the clean-room fabrication of
the devices to the quantum optics experiments and the theoretical analysis, in synergy with the theoreticians of our
Quantum Information Technologies team. The work will benefit from our numerous collaborators in France and
abroad.
future quantum technologies. For the sake of practicality and scalability, these quantum sources should be easily
produced, operate at room temperature, and be electrically excited and controlled. In this context, AlGaAs present a
strong case for the miniaturisation of different quantum components in the same chip: strong second order nonlinearity
and electro-optics effect, direct bandgap, generation of entangled photons in the telecom band [1-4].
In this project we will build on an electrically injected twin photons source operating at room temperature
demonstrated by our team (Fig a) [2] to push further the capabilities of our devices:
- we will investigate and engineer the quantum properties of the emitted bi-photon state under electrical injection.
Preliminary characterisations show that the signal to noise ratio should allow demonstrating a high quality entangled
state leading to the violation of Bell inequalities (Fig b).
- we will explore the possiblity to develop quantum photonic circuits with new functionalities exploiting the electroopticseffect to
manipulate the generated quantum state.
- we will exploit the cavity effects dues to facets reflectivity to generate frequency entangeld qudits (i.e. quantum units
of information that may take any of d states). Such states present a particular interest since they could directly be used
for quantum information processing in optical fibers, for example to increase channel capacity and security in quantum
communications [5]. Preliminary results (Fig. c) show that our devices generate comb-like spectral correlations
corresponding to entangled frequency qudits with d larger that 100.
The candidate will have the possibility to participate to all aspects of the project, from the clean-room fabrication of
the devices to the quantum optics experiments and the theoretical analysis, in synergy with the theoreticians of our
Quantum Information Technologies team. The work will benefit from our numerous collaborators in France and
abroad.
Profil recherché
M1/M2
Niveau de qualification requis
Bac + 4/5 et +
Les offres de stage ou de contrat sont définies par les recruteurs eux-mêmes.
En sa qualité d’hébergeur dans le cadre du dispositif des « 100 000 stages », la Région Île-de-France est soumise à un régime de responsabilité atténuée prévu aux articles 6.I.2 et suivants de la loi n°2204-575 du 21 juin 2004 sur la confiance dans l’économie numérique.
La Région Île-de-France ne saurait être tenue responsable du contenu des offres.
Néanmoins, si vous détectez une offre frauduleuse, abusive ou discriminatoire vous pouvez la signaler
en cliquant sur ce lien.
-
EmployeurLaboratorire Matériaux et Phénomènes Quantiques
-
Secteur d’activité de la structureEnseignement - Formation - Recherche
-
Effectif de la structureDe 51 à 250 salariés
-
Site internet de la structurehttps://www.mpq.univ-paris-diderot.fr
-
Type de stage ou contratStage pour lycéens et étudiants en formation initiale
-
Date prévisionnelle de démarrage
-
Durée du stage ou contratPlus de 4 mois et jusqu'à 6 mois
-
Le stage est-il rémunéré ?Oui
-
Niveau de qualification requis
Bac + 4/5 et + -
Lieu du stage10, rue Alice Domon et Léonie Duquet Case courrier 7021 F-75205 Paris Cedex 13
75205 PARIS 13E ARRONDISSEMENT -
Accès et transportsRER C ou metro 14