Partagez sur
STAGE OFFRE DE STAGE: COUPLING ATOMIC ARRAYS TO NANOSCALE WAVEGUIDES: TOWARDS QUANTUM NON-LINEAR OPTICS
Date de mise à jour de l’offre
Laboratoire Kastler Brossel, :
Le Laboratoire Kastler Brossel est un des acteurs majeurs dans le domaine de la physique quantique. Ses thématiques abordent de nombreux aspects depuis les tests fondamentaux de la théorie quantique jusqu’aux applications, couvrant ainsi une large gamme de sujets tels que les gaz quantiques, l’optique et l’information quantiques, les atomes et la lumière dans les milieux denses ou complexes, les tests des interactions fondamentales et la métrologie.
Description de la mission
Deterministic interactions between single photons, i.e. quantum non-linear optics, is a long-standing goal in optical physics, with applications to quantum optics and quantum information science. However, single photons usually do not interact with each other and the interaction needs to be mediated by an atomic system. Enhancing this coupling has been the driving force for a large community over the past two decades. One pioneering approach is known as cavity quantum electrodynamics (CQED), where a single atom and a single photon can be strongly coupled via a high-finesse cavity. Cavity-QED led to a better understanding of fundamental aspects of light-matter interaction and to various seminal demonstrations.
Strong transverse confinement in single-pass nanoscale waveguide recently triggered various investigations for coupling guided light and cold atoms, without a cavity. Specifically, a subwavelength waveguide can provide a large evanescent field that can interact with atoms trapped in the vicinity. An atom close to the surface can absorb a fraction of the guided light as the effective mode area is comparable with the atom cross-section. This emerging field of waveguide-QED promises unique applications to quantum networks, quantum nonlinear optics, and quantum simulation.
The LKB team recently developed an experiment in this direction. Using a nanofiber with a 400-nm diameter and a few thousands atoms trapped around
Strong transverse confinement in single-pass nanoscale waveguide recently triggered various investigations for coupling guided light and cold atoms, without a cavity. Specifically, a subwavelength waveguide can provide a large evanescent field that can interact with atoms trapped in the vicinity. An atom close to the surface can absorb a fraction of the guided light as the effective mode area is comparable with the atom cross-section. This emerging field of waveguide-QED promises unique applications to quantum networks, quantum nonlinear optics, and quantum simulation.
The LKB team recently developed an experiment in this direction. Using a nanofiber with a 400-nm diameter and a few thousands atoms trapped around
Profil recherché
Deterministic interactions between single photons, i.e. quantum non-linear optics, is a long-standing goal in optical physics, with applications to quantum optics and quantum information science. However, single photons usually do not interact with each other and the interaction needs to be mediated by an atomic system. Enhancing this coupling has been the driving force for a large community over the past two decades. One pioneering approach is known as cavity quantum electrodynamics (CQED), where a single atom and a single photon can be strongly coupled via a high-finesse cavity. Cavity-QED led to a better understanding of fundamental aspects of light-matter interaction and to various seminal demonstrations.
Strong transverse confinement in single-pass nanoscale waveguide recently triggered various investigations for coupling guided light and cold atoms, without a cavity. Specifically, a subwavelength waveguide can provide a large evanescent field that can interact with atoms
Strong transverse confinement in single-pass nanoscale waveguide recently triggered various investigations for coupling guided light and cold atoms, without a cavity. Specifically, a subwavelength waveguide can provide a large evanescent field that can interact with atoms
Niveau de qualification requis
Bac + 4/5 et +
Les offres de stage ou de contrat sont définies par les recruteurs eux-mêmes.
En sa qualité d’hébergeur dans le cadre du dispositif des « 100 000 stages », la Région Île-de-France est soumise à un régime de responsabilité atténuée prévu aux articles 6.I.2 et suivants de la loi n°2204-575 du 21 juin 2004 sur la confiance dans l’économie numérique.
La Région Île-de-France ne saurait être tenue responsable du contenu des offres.
Néanmoins, si vous détectez une offre frauduleuse, abusive ou discriminatoire vous pouvez la signaler
en cliquant sur ce lien.
-
EmployeurLaboratoire Kastler Brossel,
-
Secteur d’activité de la structureEnseignement - Formation - Recherche
-
Effectif de la structureDe 51 à 250 salariés
-
Site internet de la structurehttp://www.lkb.upmc.fr/
-
Type de stage ou contratStage pour lycéens et étudiants en formation initiale
-
Date prévisionnelle de démarrage
-
Durée du stage ou contratPlus de 2 mois et jusqu'à 4 mois
-
Le stage est-il rémunéré ?Oui
-
Niveau de qualification requis
Bac + 4/5 et + -
Lieu du stageLaboratoire Kastler Brossel Campus Pierre et Marie Curie, 13-23 Bureau 221 75252 Paris Cedex 05
75252 Paris -
Accès et transportsRER B luxembourg