Partagez sur
STAGE Absorption imaging of unidimensional gases
Date de mise à jour de l’offre
Laboratoire de physique des lasers :
Le Laboratoire de Physique des Lasers est une Unité Mixte de Recherche du CNRS (UMR 7538) et de l' Université Sorbonne Paris Nord Nous étudions les interactions entre la lumière et la matière. Nos expériences vont des domaines les plus fondamentaux à la recherche appliquée : physique quantique, atomique et moléculaire, dispositifs photoniques, optique biomédicale... Les thématiques scientifiques du laboratoire s'étendent jusqu'aux interfaces avec la chimie, la biologie et les nanotechnologies. La recherche au laboratoire est structurée en cinq axes et elle bénéficie du soutien de cinq services généraux. Il est constitué d’environ quatre-vingts personnes (10 chercheurs C.N.R.S., 30 enseignants-chercheurs, 15 personnels techniques, plus de 25 doctorants et post-doctorants) auxquelles s’ajoutent des stagiaires et des visiteurs étrangers.
Description de la mission
In the cold atom domain, absorption imaging allows the measurement of the density distribution of diluted quantum
gases. Atoms initially trapped in a magnetic potential are released and undergo a time of flight before being
illuminated by a laser beam at resonance with an atomic transition. Finally, an optical objective allows the beam to be
imaged on a CCD camera. Comparison of the intensity distribution of the laser beam in the presence of the atoms and
that obtained in the absence of the atoms makes it possible to deduce the atomic density. The optical objective is based
on the use of two converging lenses leading to a fixed magnification and a resolution limited by the wavelength of the
laser. In principle, the addition of additional lenses reduces the size of the lens.
On our experimental device, ultracold sodium atoms are magnetically trapped on the surface of an atomchip. The
magnetic potential being very anisotropic, the gas reaches the one-dimensional regime for temperatures on the order of
hundred nanokelvin. Once released, the properties of the gas can be deduced using an absoption imaging system.
The purpose of the internship will be to design and implement such a system on the experimental device. It will start
with a simulation of the properties of the optical objective using the Zeemax software and then build it using
commercial lenses. The objective will then be experimentally characterized before being installed on the experimental
setup. Finally, it will be tested directly on the one-dimensional cold gases produced at the surface of the atomchip.
gases. Atoms initially trapped in a magnetic potential are released and undergo a time of flight before being
illuminated by a laser beam at resonance with an atomic transition. Finally, an optical objective allows the beam to be
imaged on a CCD camera. Comparison of the intensity distribution of the laser beam in the presence of the atoms and
that obtained in the absence of the atoms makes it possible to deduce the atomic density. The optical objective is based
on the use of two converging lenses leading to a fixed magnification and a resolution limited by the wavelength of the
laser. In principle, the addition of additional lenses reduces the size of the lens.
On our experimental device, ultracold sodium atoms are magnetically trapped on the surface of an atomchip. The
magnetic potential being very anisotropic, the gas reaches the one-dimensional regime for temperatures on the order of
hundred nanokelvin. Once released, the properties of the gas can be deduced using an absoption imaging system.
The purpose of the internship will be to design and implement such a system on the experimental device. It will start
with a simulation of the properties of the optical objective using the Zeemax software and then build it using
commercial lenses. The objective will then be experimentally characterized before being installed on the experimental
setup. Finally, it will be tested directly on the one-dimensional cold gases produced at the surface of the atomchip.
Profil recherché
The intern will be supervised by Aurélien Perrin, within the BEC group, and will benefit from
stimulating interactions with the larger Quantum gases group of about fifteen people, including three other ultra cold
atom experiments and a theory group. Our group is a member of SIRTEQ, a world-leading joint Institute gathering all
the groups in Paris area in the field Quantum technologies. The internship is expected to lead to a PhD position
(secured funding).
stimulating interactions with the larger Quantum gases group of about fifteen people, including three other ultra cold
atom experiments and a theory group. Our group is a member of SIRTEQ, a world-leading joint Institute gathering all
the groups in Paris area in the field Quantum technologies. The internship is expected to lead to a PhD position
(secured funding).
Niveau de qualification requis
Bac + 4/5 et +
Les offres de stage ou de contrat sont définies par les recruteurs eux-mêmes.
En sa qualité d’hébergeur dans le cadre du dispositif des « 100 000 stages », la Région Île-de-France est soumise à un régime de responsabilité atténuée prévu aux articles 6.I.2 et suivants de la loi n°2204-575 du 21 juin 2004 sur la confiance dans l’économie numérique.
La Région Île-de-France ne saurait être tenue responsable du contenu des offres.
Néanmoins, si vous détectez une offre frauduleuse, abusive ou discriminatoire vous pouvez la signaler
en cliquant sur ce lien.
-
EmployeurLaboratoire de physique des lasers
-
Secteur d’activité de la structureEnseignement - Formation - Recherche
-
Effectif de la structureDe 51 à 250 salariés
-
Site internet de la structurehttp://www-lpl.univ-paris13.fr
-
Type de stage ou contratStage pour lycéens et étudiants en formation initiale
-
Date prévisionnelle de démarrage
-
Durée du stage ou contratPlus de 4 mois et jusqu'à 6 mois
-
Le stage est-il rémunéré ?Oui
-
Niveau de qualification requis
Bac + 4/5 et + -
Lieu du stage99 av. JB Clément
93430 VILLETANEUSE -
Accès et transportshttp://www-lpl.univ-paris13.fr/FR/Venir-au-LPL.awp